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Abstract 

In this paper, we provide an overview of brain mapping in neuroscience and describe the 

application of spatial data processing techniques to represent the brain as a multi-layered 

map.Anatomical reference points (landmarks) are determined from the topological properties 

of the brain, including the shapes of sulci, gyri, and fissures. Functional reference points are 

calculated by measured parameters of brain activity. Linking experimental results with spatial 

and temporal reference points is a necessary step for performing a comparative analysis of 

heterogeneous data regarding brain structures and activity. Using reference points helps 

define coordinate systems and scales, highlight points of interest and regions of interest, 

create templates, and classify data. The paper shows that spatial analysis is a convenient 

approach to pattern recognition in neuroimaging. We also discuss the role of extrinsic 

behavior landmark stimuli and intrinsic brain structural elements such as place cells and grid 

cells in navigation tasks.  
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1. INTRODUCTION 

The brain can be represented as a spatially distributed multi-scale and multi-level structure in 

which continuous dynamic processes occur. 

Two main blocks of spatial data processing tasks in neuroscience are shown in Figure 1. 

Studies of brain mapping generally focus on addressing the question, “What is the space of 

the brain?” (Figure 1A). Thus, analyses of the brain’s structure at different levels – ranging 

from individual cells to the entire brain’s architecture – are practiced by scientific researchers 

as well as by specialists in the fields of medicine and neuroradiology.  

On the other hand, studies of brain activity during orientation in space generally focus on 

addressing the question, “How does the brain navigate in space?” (Figure 1B). This block of 

study includes the investigation of spatial perception, navigation, and the brain’s positioning 

functions.  
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Figure 1. The two main blocks of spatial data processing tasks in neuroscience. Block A addresses the question, 

“What is the space of the brain?” Block B addresses the question, “How does the brain navigate in space?” 

 

The remaining sections in this paper are organized as follows:  

Section 2 provides a brief description of the subject areas and common interests between 

brain mapping and geomapping. Section 3 provides an overview of the techniques used in 

brain mapping. Section 4 describes how to use the scale and reference points for analyzing 

multi-level data in brain mapping. Section 5 contains the report about pattern recognition in 

neuroradiology with application of geographic information system technologies. Section 6 

discusses the perception of spatial information and positioning systems in the brain. Finally, 

we provide conclusions in Section 7. Additional information about the standards and 

software, which typically applied in brain mapping, is contained in the Appendix. 

2. COMPARISON OF SPATIAL DATA PROCESSING BETWEEN NEURO-

INFORMATICS AND GEOINFORMATICS 

Although geoinformatics and neuroinformatics deal with materially different objects, the 

tools for spatial data processing are based on certainly similar methods and are designed to 

solve similar problems.  

Integrated vector-and-raster models, which are implemented in geographical information 

systems (GIS), provides a representation of the outer and inner surfaces of anatomical 

structures and enables the identification of anatomical structures and spatial analyses 

(Barbeito et al., 2015). Brain-mapping software and GIS technologies use a common set of 

instruments, including measure of distances and areas, coordinate representation system, 

multi-layer datasets, metadata storing, and metadata sharing.  

GIS technologies can be valuable in brain mapping due to the processing of raster data and 

vector data. GIS technologies are also applied in the collection and analysis of heterogeneous 

spatial data, organization, and publication of maps. Moreover, GIS tools are applied for tasks 

that involve a large number of images. Suitable applications have already been developed in 

advanced geographic information systems, such as ArcGIS: 

(http://www.esri.com/software/arcgis) and QGIS (http://www.qgis.org).  

Brain mapping techniques would help GIS cartographers analyze dynamic processes. Due 

to the relatively fast processes that occur in the brain, phenomena such as pacemakers and 

oscillations are often recorded and studied in neuroscience. However, similar phenomena can 

also be observed in the relatively slow dynamic processes that occur at the Earth’s surface, 

for example in environmental studies. These similarities serve as an additional bridge 

between GIS and brain mapping. In both cases, the mapping techniques should be flexible 

with respect to the essential characteristics of the space, its connections, and its inherent 

dynamics.  

To visualize similarities in mapping technologies, consider a typical brain map (an 

example of multi-layer dataset based on the Interactive Multiresolution Brain Atlas (Mikula 

http://www.esri.com/software/arcgis
http://www.qgis.org/
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et al., 2007) is shown in Figure 2A), and compare this map with raster or vector map in a 

typical GIS (an example is shown in Figure 2B).  

 
Figure 2. А. Multi-layered brain map of the grivet monkey Chlorocebus aethiops. Figure shows the map of 

brain slice at a wide scale, and zoomed part near the taenia tecta (TT) area. The individual layers are represented 

by functional brain units (reproduced from http://brainmaps.org). B. Multi-layered map in QGIS. Figure shows 

the terrain map at a wide scale, and zoomed part near the railway station. 

 

Nowadays, location-specific geodata are provided in large quantities by both industrial 

equipment (for example, remote sensing devices) and personal media tools (for example, 

smartphones). Similar situation is occurring with respect to brain mapping, in which 

radiologists typically view hundreds – or even thousands – of images. For example, advanced 

multidetector computed tomography produces several thousand images during a single 

examination (Andriole et al., 2011). 

 

Table 1 summarizes the similarities between brain mapping and GIS mapping. 

 

http://brainmaps.org/
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Table 1. Comparison of subject areas between brain mapping and GIS mapping 

Subject area Brain mapping GIS mapping 

I. Primary data processing 

Selection of coordinate systems. 

Configuring sets of layers. 

Spatial measurements: 

calculation of geometrical 

parameters (length, area, 

volume). 

2D/3D transformations. 

Vectorization. 

Spatial database. 

Data compression. 

Primary data sources: 

Magnetic resonance imaging 

(MRI), functional magnetic 

resonance imaging (fMRI), 

single-photon emission 

computed tomography 

(SPECT/CT), electro-

encephalography (EEG), 

magnetoencephalography 

(MEG), optogenetics. 

Primary data sources: 

Remote sensing, land surveying. 

II. Recognition and classification 

Finding of surface specific 

points and lines. 

Contouring. 

Generalization. 

Data classification. 

Pattern recognition in 

neuroimaging. 

Pattern recognition in 

geoimaging. 

III. Multi-scale data integration 

Data standards. Digital Imaging and 

Communications in Medicine 

(DICOM) standards 

(http://dicom.nema.org), 

DICOM Files, XML. 

The Open Geospatial 

Consortium (OGC) standards 

(http://www.opengeospatial.org/

standards), 

WMS, GML, KML, XML. 

Combining data from different 

sources. 

Brain atlases. Geodata integration. 

IV. Spatio-temporal processes and connectivity 

Dynamic processes and 

connectivity. 

Area’s connectivity. 

Brain activity. 

 

Engineering communication. 

Urban planning. 

Ecology. 

V. Positioning systems 

Orienteering by reference points. 

Wayfinding. 

Place cells and grid cells. 

ROIs, POIs. 

Natural or manmade landmarks. 

ROIs, POIs. 

Navigation. 

Movement control. 

Route selection. 

Visual object recognition. 

Locomotion. 

Route selection. 

Logistics. 

3. SPATIAL DATA PROCESSING IN BRAIN MAPPING 

The basic mission in brain mapping can be summarized as follows (Frackowiak & Markram, 

2015): the aim of cerebral cartography is to generate atlases that use anatomical frameworks 

to organize and convey spatially and temporally distributed functional information regarding 

the brain at all organizational levels ranging from genes to cognition and at all relevant 

spatial and temporal scales.  

Thus, ideal brain atlas should provide a comprehensive multi-scale spatial representation 

of the brain at both the structural and functional levels. 

3.1 Basic components and datasets 

3.1.1 Neuroimaging data 

Neuroimaging is used to collect and process images, thereby allowing researchers to visualize 

the structures and functional characteristics of the brain.  

http://dicom.nema.org/Dicom/2011/11_19pu.pdf
http://www.opengeospatial.org/standards
http://www.opengeospatial.org/standards
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Tomography produces a series of brain images in the form of two-dimensional (2D) slices, 

allowing researchers to measure the brain’s activity in response to external stimuli and to 

identify tumor-containing and/or diseased areas of the brain. Neuroradiologists obtain these 

original 2D slices, which are then could be converted into 3D data.  

Digital Imaging and Communications in Medicine (DICOM, http://dicom.nema.org) is the 

current standard for handling, storing, printing, and transmitting medical imaging 

information. 

MicroDicom (http://www.microdicom.com) is an application for the primary processing 

and preservation of medical images obtained in DICOM format. MicroDicom user interface 

is depicted in Figure 3. 

 
Figure 3. Data representation in MicroDicom. 

3.1.2 Functional magnetic resonance imaging  

Functional magnetic resonance imaging (fMRI) is a neuroimaging procedure using 

technology that measures brain activity by detecting changes associated with blood flow. 

FMRI provides information regarding the brain’s functions with spatial reference for the 

brain's response. 

Despite its advantages, fMRI has limited temporal resolution. Specifically, regions in 

which the blood oxygen level-dependent (BOLD) signals changes in fMRI may not 

necessarily correspond with regions of neural activity (Baillet et al., 2001). 

3.1.3 Brain activity  

Magnetoencephalography (MEG) and electroencephalography (EEG) provide a non-invasive 

measure of neural activity by measuring electromagnetic signals. In EEG, electrical potential 

differences are measured between pairs of “electrode – referent” placed on the scalp. The 

electrodes can be either glued directly to the skin at specific locations (for example, directly 

above cortical regions of interest) or they can be fitted in an elastic cap that can be placed 

easily over the top of the head, providing near-uniform coverage of the entire scalp. Because 

http://dicom.nema.org/Dicom/2011/11_19pu.pdf
http://www.microdicom.com)/
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the electrodes are placed on the surface of the head and not directly in the area being 

observed, the precise location of the source of activity should be determined by calculation. 

Combining MEG and/or EEG with another methodologies allows researchers to better 

localize and separate various components in the brain’s electrical responses (Baillet et al., 

2001). Individual MEG and EEG source maps can be normalized to a common brain atlas, 

and statistical inference can be performed at the group level (Evans et al., 2012). 

The recorded brain activity is typically characterized by distinct frequencies and spatial 

distributions, which depend on the various states of the brain (for example, sleep or 

wakefulness). The recorded signals are the result of superimposing the activity of large 

populations of neurons (neuronal ensembles). Because the number of signals per unit time is 

extremely large, EEG data is generally analyzed using established statistical methods. 

A spatial-temporal representation of activity of neuronal ensemble can be described by 

oscillatory dynamics. Thus, oscillatory brain activity can be displayed as a map of wave 

distribution. 

3.2 Data structures in brain mapping  

3.2.1 Layered structures 

Radiologists typically work with sets of images (two-dimensional slices) taken at intervals of 

few millimetres. 

Subsequently, the sets of 2D projections can be arranged in a 3D representation. This is 

very similar to the construction of three-dimensional terrain model based on satellite imagery 

data (Figure 4). 

 
Figure 4. Spatial data processing: from sets of slides to the three-dimensional model in neuroimaging (A) and in 

satellite imagery (B) (map reproduced from https://www.google.com). 

 

In practice, organization of layers in terms of separate functional areas is often provided, 

and is used in tasks of connectivity. For example, Robinson and Rolls reported the integration 

of layers in invariant visual object recognition (Robinson & Rolls, 2015). 

3.2.2 Default mode network 

The default mode network is a distinct brain feature that is activated when an individual 

engages in reflexion (Razi et al., 2015). 

https://www.google.com/
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The concept of the default mode network was discussed by Simony et al. (Simony et al., 

2016), in which the authors introduced the concept of inter-subject functional correlation, 

which isolates stimulus-dependent inter-region correlations between brains that are exposed 

to the same stimulus. 

3.2.3 Multi-level structural and functional brain atlases 

Multi-layer neuroimaging data obtained from various brain regions can be grouped within 

atlases. Multi-level atlases include numerous reports which combined into a single atlas.  

One of the brain atlases is shown in Figure 5. This Brainnetome atlas 

(http://atlas.brainnetome.org/brainnetome.html) was generated in order to identify brain 

networks using multimodal neuroimaging techniques ranging from the highest-resolution 

scale (microtechniques, ultramicrotomy) to the most macroscopic scales (EEG, fMRI, and 

diffusion MRI), thereby allowing researchers to investigate the relationship between these 

scales (Fan et al., 2016). 

 

 
Figure 5. Brainnetome web-interface (reproduced from http://atlas.brainnetome.org/bnatlas.html). 

 

Evans et al. summarized the brain atlases that are currently available (Evans et al., 2012). 

In review, they summarized the evolution of stereotaxic space, the creation of brain atlases, 

and future trends that can be expected in upcoming atlases.  

3.3 Classification and parcellation of brain areas 

Classifiers of brain areas are typically used for generating a brain atlas. For example, Glasser 

and colleagues delineated 180 areas in each hemisphere based on sharp changes in cortical 

architecture, function, connectivity, and/or topography (Glasser et al., 2016); in addition, they 

characterized 97 new areas by training a machine-learning classifier to recognize the 

multimodal “fingerprint” of each cortical area. The following criteria were used for 

parcellation: I) spatially overlapping gradient “ridges” between each pair of areas for at least 

http://atlas.brainnetome.org/brainnetome.html
http://atlas.brainnetome.org/bnatlas.html
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two independent areal feature maps; II) similar gradient ridges present in roughly 

corresponding locations in both hemispheres; III) gradients that are not correlated with 

artifacts; and IV) robust, statistically significant cross-border differences in the feature maps.  

Although most structural brain atlases are delineated manually by region of interest, it is 

possible to automate these operations. For example, Wang et al. proposed a method for 

parcellating the brain into regions of interest based on connectivity by multi-class Hopfield 

network algorithm (Wang et al., 2016). 

Data classifications generally apply “machine learning” methods, for example Support 

Vector Machines (SVMs) or Ensemble Tree Learning Techniques (Martinez-Murcia et al., 

2016). 

Mandelkow et al. compared several algorithms for classification, including Nearest 

Neighbor, Gaussian Naive Bayes, and Linear Discriminant Analysis; high accuracy in terms 

of discriminating fMRI response patterns is achieved using a large number of natural visual 

stimuli (Mandelkow et al., 2016). 

3.4 Consolidation of temporal and spatial data in brain mapping 

Modern studies performed comparative analyses between stationary data (MRI, fMRI) and 

dynamic data (EEG). To analyze EEG data all of the images are typically superimposed on an 

“average” brain, without taking into account topological features unique to individual brains. 

Such an approach often leads to systematic errors that can be eliminated with computational 

methods. Averaged static EEG maps can be overlaid on anatomical MRI-based maps. 

Such a comparison between temporal and spatial data usually reveals that the computed 

EEG response is correlated with – but does not necessarily coincide with – active areas 

identified using fMRI. Recording fast EEG signals with high temporal resolution provides a 

higher level of detail than MRI and fMRI.  

Therefore, combination of techniques can provide valuable information regarding the 

temporal structure and spatial distribution of the resting state networks under specific 

experimental and/or clinical conditions (Lehmann, 2010). For example, Yuan et al. 

reconstructed networks from high-resolution EEG data and performed spatial and temporal 

comparisons with fMRI data (Yuan et al., 2016). 

There are two basic approaches to attenuate artifacts due to volume conduction: spatial 

filtering in combination with standard connectivity methods, or connectivity methods such as 

the weighted phase lag index that are blind to instantaneous connectivity that may reflect 

volume conduction artifacts (Cohen, 2014a). 

Cohen reported that temporal fluctuations in oscillation peak frequency (also known as 

“frequency sliding”) can be used for analyses at multiple scales within neuroscience (Cohen, 

2014b).  

Oscillation frequency appears to be a general principle that regulates brain function on 

multiple spatial and temporal scales, ranging from modulating spike timing in individual 

neurons to whole coordinating brain networks during cognition and the resting state. 

Simultaneous multiscale study of brain activity signals leads to the detection of time lag 

(delay interval) between the signals (Figure 6). 
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Figure 6. A. Distance between electrodes 1 and 2 (ΔL). B. Time lag between electrodes 1 and 2 (Δt). 

3.5 Topography and connectivity in spatio-temporal processes  

3.5.1 Effects of topography in the measurement of brain activity 

Vertebrate brains generally contain two kinds of tissue: grey matter on the surface, which 

contains local networks of neurons that are wired by dendrites and mostly local axons, and 

white matter inside, which contains long-range axons that implement global communication 

(Wen & Chklovskii, 2005). 

Shapes of brain curves, such as sulci, gyri and fissures, should be explored in 3D 

modelling, similar to how mountain topography is considered in 3D. 

Subsurface connections improve level of communications, similar to tunnels in the hills 

(Figure 7 A).  

Plane model of the brain shapes is shown in Figure 7B. Model of the interaction of 

neurons is shown in Figure 7C: convergence of curved surfaces could modify a possibility of 

connection.  

 
Figure 7. A. One-level objects tend to join together by topography (map to the underlying layer reproduced 

from https://www.visitnorway.com). B. Plane model of the brain shapes. C. Ensembles from different brain 

areas can support distant and near-field connections.  

https://www.visitnorway.com/
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3.5.2 Sensor positions 

To define the reference points are often used computational methods. For example, the 

software package LORETA (http://www.uzh.ch/keyinst/loreta) calculates the density 

distribution of sources using raw data in the form of electric potentials recorded at the scalp 

(event-related potentials, and cross-spectra EEG recordings). 

The fact that the brain surface is curved has a significant strong impact on the overall 

measuring activity of ensembles of different segments. Figure 8 shows that measurements of 

activity are carried out with the scalp, and the electrodes are located distantly from the active 

sources.  

Brain without electrodes and arrangement of the electrodes on the scalp in LORETA 

software are shown in Figure 8A, 8B, and arrangement of the electrodes relative to the slice is 

shown in Figure 8C.  

 

 
Figure 8. A. Brain without electrodes and B. Arrangement of the electrodes on the scalp in Loreta software. C. 

Arrangement of the electrodes relative to the slice. 

 

To interpret brain activity various models are used, ranging from a representation of the 

brain as a sphere to the most accurate representation of the brain’s topographic surface. 

Understanding the impact of neural topography on the resulting measure of brain activity is 

essential in analyzing interactions and connectivities between various areas of the brain 

(Thivierge & Marcus, 2007; Guntupalli et al., 2016). 

3.5.3 Tractography 

Fiber tract trajectories are coherently organized pathways of white matter in the brain. 

Tractography allows researchers to calculate contiguous fiber tract trajectories using discrete 

diffusion tensor MRI data (Basser et al., 2000) and to visualize the orientation and integrity 

of these pathways in the brain. 

A map of structural connectivity can be generated as a combination of diffusion imaging 

and probabilistic tractography. A map of functional connectivity can be generated based on 

spatio-temporal correlations derived from resting-state fMRI data (Van Essen et al., 2014). 

Maps of brain connectivity are being developed in order to reproduce the direction of 

anatomical and functional connectivity between distinct units, as well as 2D and 3D geomaps 

are constructed for visualizing the movements (Figure 9). 

http://www.uzh.ch/keyinst/loreta
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Figure 9. A.Brain fiber tract trajectories. B. Shipping Tracks (reproduced from https://www.shipmap.org). 

4. SCALES AND REFERENCE POINTS IN BRAIN MAPPING  

4.1 An analysis of spatially distributed brain activity 

An analysis of spatially distributed brain activity should include the following considerations: 

- The choice of coordinate systems for describing the observations; 

- Multi-scale data properties; 

- Individuality factors; 

- The quality of the measurement techniques; and 

- The specificity of the brain areas being analyzed. 

The coordinate systems in brain activity measurements (EEG, MEG, etc.) are usually 

defined in terms of anatomical landmarks on the surface of the head; in contrast, the 

coordinate systems for neuroimaging (MRI, fMRI, CT) are usually defined in terms of slices 

inside the head. 

The most commonly used coordinate systems are the Talairach Atlas 

(http://www.talairach.org) and the MNI (Montreal Neurological Institute) stereotaxic 

coordinates (for more details, see the Appendix). 

MNI coordinates in Loreta software (http://www.uzh.ch/keyinst/loreta) shown at Figure 

10, coordinate conversion MNI/ Talairach also is possible in this software. 

https://www.shipmap.org/
http://www.talairach.org/
http://www.uzh.ch/keyinst/loreta
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Figure 10. MNI coordinates in Loreta software. 

 

Toro & Burnod introduced representations of the cortical anatomy with the intention of 

simplifying visualization of the principal sulci and other anatomical landmarks that serve as 

the axes of the geometric model (Toro & Burnod, 2003). Van Essen used a surface-based 

coordinate system to visualize the cerebral cortex (Van Essen et al., 1998). 

A thorough overview of coordinate systems is available at FieldTrip (Oostenveld et al., 

2011) (http://www.fieldtriptoolbox.org). 

Coordinate grids for Allen Human Brain Atlas (http://www.brain-map.org) are shown in 

Figure 11. 

 
Figure 11. Coordinate grids for Allen Human Brain Atlas in Brain Explorer 2: A. Grids of sagittal and 

horizontal sections. B. Compass. C. 3D Atlas. 

 

Multi-scale data properties lead to the necessity of generalization of the signals during 

transitions to wide scales. In addition, part of the observed signal is considered to be noise by 

the statistical analysis; typically, most of EEG signals can be filtered out as “random noise” 

and ignored in the subsequent analysis. The ratio of signal-to-noise is defined for each scale. 

With respect to individuality factors, it is usually not possible to use a generalized brain 

map for all participants; a particular map must be compiled for each participant. However, 

with studies that do not require high precision (for example, to identify the onset of an 

epileptic seizure), a generalized brain atlas is generally acceptable. Individual brain structure 

can be considered invariant within a single set of measurements, and these data can be used 

as the basis for analyzing dynamic data. 

http://www.fieldtriptoolbox.org/
http://www.brain-map.org/
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In brain mapping, it is necessary to consider the features of the measurement, including 

the accuracy and relative location of the sensors. In addition, systematic errors may occur due 

to changes in physiological factors such as heart rate, blood oxygen saturation, and blood 

pressure (Ghosh Hajra et al., 2016). 

Some brain areas can duplicate the cortex function. The majority of the human cerebellum 

maps to cerebral association networks in an orderly manner that includes a mirroring of the 

prominent cerebral asymmetries (Buckner, 2013). 

With regard to all of the above-mentioned problems, GIS technologies may provide a 

suitable solution, including methods for working on various scales and with various reference 

points. 

4.2 Scales 

4.2.1 Sets of scales  

The major sets of scales (and their dimensions) for brain mapping can be defined as follows: 

cells (10-6 m), ensembles (groups of cells; 10-4 m), and brain regions (10-2 m); the appropriate 

research methods should be used for each of these scales.  

A complete multi-level map of an individual human brain – at the resolution required for 

mechanistic explanations – will need to represent the morphology, physiology, subcellular, 

and molecular architecture of neurons (and a similar number of non-neuronal cells) 

(Frackowiak & Markram, 2015). 

4.2.2 Measurement accuracy and noise 

The scale is determined primarily by the resolution of the measuring device. Thus, the spatial 

resolution of fMRI studies is defined by the ability of the equipment to distinguish between 

boundaries in the brain. Spatial resolution is measured by the size of the voxels, ranging from 

4-5 mm to 1 mm (for example, in MRI). Scanning time increases directly with an increasing 

number of voxels and number of slices. One voxel typically includes approximately a few 

million neurons. 

Marblestone et al. outlined the physical principles governing brain activity mapping using 

optical, electrical, magnetic resonance, and molecular modalities of neural recording 

(Marblestone et al., 2013). The authors noted that the recording of activity is limited by the 

low multiplexing capacity of electrodes and by their lack of intrinsic spatial resolution. In 

addition, optical methods are constrained by the scattering of visible light in brain tissue, and 

magnetic resonance is hindered by diffusion and relaxation time scales of protons. 

When resolution is improved, noise typically increases. Moreover, noise can be noticed as 

a phenomenon, which is associated with different scales. Indeed, the choice of scale 

determines the filter settings to reduce noise. The ability to distinguish between noise and the 

true signal can affect the amount of data included in the final analysis. Consolidation data in 

multi-scale project allows researchers carefully to filter or to reduce the noise. 

4.3 Reference points 

4.3.1 Significance of reference points 

In the brain, reference points are biologically significant points with coordinate description. 

Reference points are essential for integrating datasets obtained from different sources. 
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Individual anatomical and physiological reference points can be allocated based on the 

spatial and functional features of an individual brain and are based on characteristic surface 

features and/or measured activity. Lines of interest and areas of interest are identified using a 

similar approach. 

Individual reference points can be mapped to an existing general brain atlas in order to 

specify functional locations or to update coordinates. Thus, points of interest, lines of interest, 

and regions of interest (often abbreviated POIs, LOIs, and ROIs, respectively) can serve as a 

basis for linking disparate data and for generalizing. 

The various types of reference points are summarized in Table 2. 

 
Table 2. Types of reference points 

Type Description 

I. Internal reference points 

Anatomical points Internal anatomical points (landmarks) are based on 

the structure of parts of the brain 

Functional points The points identified using blood oxygen level-

dependent (BOLD) contrast imaging show changes 

in the brain’s state 

Dynamic points of brain activity The “point of neuron activity” is a group of brain 

cells with stable, detectable activity 

II. Sensor position 

Points of observation (can be used as the 

relative origin of coordinates) 

Locations of the electrodes and sensors are taken 

into account when determining the relative 

coordinate system 

Biomarkers Biomarkers provide a selection of places of interest 

in the tissue microstructure 

III. Brain cells for coordination and navigation 

Place cells, grid cells, head-direction cells, and 

boundary cells 

Positioning systems in the brain 

4.3.2 Anatomical and physiological landmarks  

Landmarks are generally used to describe the shapes of brain structures and for parcellation. 

The shape of sulci is used to measure brain variability (Durrleman et al., 2007) and 

topological components of sulci are used as landmarks (Mangin et al., 2015). Functional 

reference points for brain activity are calculated using robust and similar values of measured 

parameters. 

Zhang et al. formulated the detection of anatomical landmark and boundaries as a 

classification problem (Zhang et al., 2012) in which a shape repository/dictionary is 

constructed using manually delineated organ contours and/or surfaces. 

Liu et al. presented algorithms to automatically detect and match landmark curves on 

cortical surfaces in order to obtain optimal parameters of brain conformation (Liu et al., 

2006). The authors proposed an automated landmark curve-tracing method based on the 

principal directions established by the local Weingarten matrix. 

Sergejeva et al. proposed a standardized set of anatomical landmarks for registering 

whole-brain imaging datasets obtained from mouse and rat brains, in particular for integrating 

experimental image data in the Waxholm Space atlas (Sergejeva et al., 2015). 

New parcellation system for the orbitofrontal cortex using automated anatomical labeling 

was described by Rolls (Rolls et al., 2015). 

 

 



Zaleshina M. and A. Zaleshin / European Journal of Geography 8 1 6–31 (2017) 

European Journal of Geography-ISSN 1792-1341 © All rights reserved                                                                                20 

4.3.3 Points of neuronal activity 

To solve the dynamic problems associated with neural activity, it is essential to know the 

location of neurons or neuronal ensembles that are being measured. In many types of 

biological experiments, researchers simply operate with aggregate data, without providing 

any reference to coordinates. 

An accurate method to overcome this issue is the registration of “points of neuron 

activity” by electrodes that are implanted in the brain. However, even with such registration, 

interference from neighboring units of activity can distort the detected signals, making it 

difficult to locate the precise source of the activity. EEG electrodes are spaced rather widely 

apart; the source of the signals recorded from neuronal ensembles can be determined only by 

computational methods (see section 3.5.2).  

5. PATTERN RECOGNITION IN NEUROIMAGING 

In this section we present the possibilities of GIS applications for the pattern recognition and 

comparative analysis of electronic medical records. 

5.1 Primary data 

Primary electronic medical records for analysis were obtained from the period 2012 through 

2015. These data contain images obtained using various CT and MRI equipment.  

View of primary images is shown in Figure 12. 

 
Figure 12. Primary neuroimaging dataset.  

5.2 Methods 

Control primary image series were grouped by date and type of observation in MicroDicom 

(http://www.microdicom.com).  

The data were processed with open source software, including additional analysis 

modules. The GIS methods applied in the data analysis are shown in  

Table 3.  
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Table 3. Data processing methods 

Methods Description Tools 

Contouring 

 

Contouring allows converting raster data to 

vector. Isoline calculation with a given 

tolerance is performed using Gdal_contour 

plugin. 

Gdal_contour generates a vector contour 

file from the input raster 

http://www.gdal.org/gdal_contour.html. 

Selection of 

reference points 

Plugin allows extracting nodes from 

isolines and polygon layers and then 

outputting extracted nodes as reference 

points. 

Extract nodes is a tool for nodes 

extraction: 

http://docs.qgis.org/2.6/en/docs/user_manu

al/processing_algs/qgis/vector_geometry_t

ools/extractnodes.html. 

Georeferencing 

of image series 

To georeference an image, one first needs: 

to establish reference points, input the 

known local coordinates of these points, 

choose the coordinate system and other 

projection parameters and then minimize 

residuals. Residuals are the difference 

between the actual coordinates of the 

reference points and the coordinates 

predicted by the spatial model (Figure 13). 

Georeferencer Plugin is a tool for 

snapping rasters to single coordinate 

system with help of reference points: 

http://docs.qgis.org/2.0/en/docs/user_manu

al/plugins/plugins_georeferencer.html. 

ROIs identi-

fication 

Subsets of samples of the tumor area are 

selected as regions of interest (ROIs). 

Vector ROIs are the basis for next template 

creation and classification. 

Semi-Automatic Classification 
(https://fromgistors.blogspot.com/p/semi-

automatic-classification-plugin.html) is a 

plugin for the semi-automatic supervised 

classification of images (in the work 

modified version was used). 

Data 

Classification 

and 

Template 

Creation 

DTclassifier helps to allocate data on the 

image with the same characteristics. How it 

works: 

(1)Selecting training datasets, 

(2)Selecting data to classify, 

(3)Refining templates. 

DTclassifier 
(http://nextgis.com/projects/dtclassifier) is 

a plugin that allows classification of data in 

QGIS. It uses a particular classification 

algorithm - “decision trees” (Murthy, 

1998). 

Multilayers 

Comparison 

To compare parameter data from different 

layers the analytical tools of fTools Plugin 

are used. It provides a growing suite of 

spatial data management and analysis 

functions that are both fast and functional. 

fTools Plugin for analysis functions: 

http://docs.qgis.org/2.8/en/docs/user_manu

al/plugins/plugins_ftools.html. 

 

 
Figure 13. Georeferencer Plugin in QGIS. 

http://www.gdal.org/gdal_contour.html
http://docs.qgis.org/2.6/en/docs/user_manual/processing_algs/qgis/vector_geometry_tools/extractnodes.html
http://docs.qgis.org/2.6/en/docs/user_manual/processing_algs/qgis/vector_geometry_tools/extractnodes.html
http://docs.qgis.org/2.6/en/docs/user_manual/processing_algs/qgis/vector_geometry_tools/extractnodes.html
http://docs.qgis.org/2.0/en/docs/user_manual/plugins/plugins_georeferencer.html
http://docs.qgis.org/2.0/en/docs/user_manual/plugins/plugins_georeferencer.html
https://fromgistors.blogspot.com/p/semi-automatic-classification-plugin.html
https://fromgistors.blogspot.com/p/semi-automatic-classification-plugin.html
http://nextgis.com/projects/dtclassifier
http://docs.qgis.org/2.8/en/docs/user_manual/plugins/plugins_ftools.html
http://docs.qgis.org/2.8/en/docs/user_manual/plugins/plugins_ftools.html


Zaleshina M. and A. Zaleshin / European Journal of Geography 8 1 6–31 (2017) 

European Journal of Geography-ISSN 1792-1341 © All rights reserved                                                                                22 

5.3 Results 

Example of selected ROIs (tumor areas) and comparison of tumor sizes at different times is 

shown in Figure 14. 

 

 
Figure 14. A. Example of selected ROIs (tumor areas). B. Comparison of tumor sizes at different times (tumor 

contours with maximum section square are shown in the right column). 

6. PERCEPTION OF EXTERNAL ROUTES AND INTERNAL TRACTS 

6.1 Perception of spatial information  

Neuroscientists and geoscientists can actively interact in researching of the brain’s perception 

of external space and the brain’s orientation in space. 

The study of the brain’s perception of spatial information includes a wide range of tasks, 

including visual object recognition and locomotion. 

Using high-resolution fMRI scanning, Peer et al. found that mental orientation in space 

and time produces a sequential posterior–anterior pattern of activity in each participant’s 

brain (Peer et al., 2015). 

Guntupalli et al. presented a linear model of shared representational spaces in the human 

cortex and models of cortical patterns of neural responses with individual-specific 

topographic basis functions (Guntupalli et al., 2016). 

Neural responses in the visual cortex are governed by topographic mapping from retinal 

locations to cortical responses. At the voxel population level, early visual cortex activity 

enables the accurate decoding of stimuli locations (Roth, 2016). 

6.2 Positioning systems in the brain 

Grid-based methods are well-knowing in geoinformatics. 2D or 3D grid lines define the 

coordinate system and provide a unique reference to space features (Figure 15).  
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Figure 15. 3D grids and contour lines. 

 

Grid reference tools are usually applied in a large number of GIS. These methods seem 

artificial and invented exclusively for calculations. But as shown in recent studies, the brain 

itself contains biological structures that are directly responsible for both navigation and 

recognition (Moser et al., 2014; Stemmler, et al., 2015).  

The types of brain cells associated with navigation were summarized by Chersi and 

Burgess (Chersi & Burgess, 2015). In their review, the authors described the following four 

cell types: I) place cells, which typically fire in a restricted portion of the environment; II) 

directional grid cells or ‘‘conjunctive’’ cells, whose grid-like spatial firing is also modulated 

by head direction; III) head-direction cells, which typically fire in a narrow range of 

allocentric directions; and IV) boundary cells, which typically fire at a specific distance from 

an environmental boundary along a specific allocentric direction. 

In 2014, the Nobel Prize in Physiology or Medicine was shared, with half of the prize 

awarded to John O’Keefe, and the other half awarded jointly to May-Britt Moser and Edvard 

Moser “for their discoveries of cells that constitute a positioning system in the brain” 

(http://www.nobelprize.org/nobel_prizes/medicine/laureates/2014).  

O’Keefe concluded that the hippocampus generates numerous maps that are represented 

by the collective activity of place cells. Results obtained by May-Britt Moser and Edvard 

Moser confirmed that grid cells are activated in a unique spatial pattern, and collectively 

these cells constitute a coordinate system that allows for spatial navigation. 

Border cells, grid cells, and head-direction cells form the elements of a metric 

representation of local space, and are likely used when an animal navigates through its 

environment (Moser & Moser, 2011). In the hippocampus, place cells are remapped when the 

environment changes (Miao et al., 2015; Colgin et al., 2008). 

http://www.nobelprize.org/nobel_prizes/medicine/laureates/2014/
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Unlike place cells, grid cells have several properties that facilitate navigation (Bush et al., 

2015). Grid cells recorded at the same electrode location share several metric properties, 

including spacing, orientation, and field size (Hafting et al., 2005). 

The grid cell network is intrinsically organized, with the grid cells clustered in separate, 

independent grid maps with distinct scales, orientations, and asymmetries (Moser, 2016). 

Grid cells provide a metric of the neural representation of space, similar to the way in 

which head-direction cells provide a directional frame of reference. As a result, each 

environment is represented by a unique combination of active place cells and place fields 

(Buzsaki & Moser, 2013). 

Model of grid- and place-cells’ activity is shown in Figure 16. 

 
Figure 16. A. Model of place cell firing. B. Model of grid cell firing. C. Model of grid and place cells’ activity. 

 

The optimal configurations of spatial scales for grid cell firing in the context of noise and 

uncertainty were reported by Towse et al., who concluded that such configurations can be 

changed (Towse et al., 2014). 

Oscillatory dynamics and place field maps reflect the processing of sequence and place 

memory (Cabral et al., 2014). Oscillatory dynamics of grid cells contribute to the processing 

of space-time, including the speed of movement. Theta-band oscillatory dynamics of grid cell 

were also described by Towse (Towse et al., 2014). 

Optogenetics and pharmacogenetics techniques are used to study individual cells, 

including grid cells (Miao et al., 2015). Optogenetics uses light to alter neural processing at 

the level of single spikes and synaptic events, providing a widely adaptable tool for 

genetically targeted optical control of neural activity (Boyden et al., 2005). These 

technologies apply light to control biological processes within targeted cells in vivo, with 

high temporal precision, thereby allowing researchers to develop generalized strategies for 

targeting cells based on morphology and/or tissue topology (Gradinaru et al., 2010). 

But results of Krupic et al. provide compelling evidence for the idea that environmental 

boundaries compete with the internal organization of the grid cell system to drive grid firing. 

Grid cell activity cannot provide a universal spatial metric in all environments (Krupic et al., 

2015). 

6.3 Reference points and interpolation in navigation tasks 

Our brains are continuously engaged in the selection and construction of a route. Poucet et al.  
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focus on the information carried by grid cells, their relationship to place cells and the role of 

grid cells in navigation and also discussed a framework provided by landmark stimuli or by 

information about motion of animal (Poucet et al., 2013). 

To create a generalized representation of space, one must create a cognitive map of the 

environment by integrating observations over extended periods of time and by inferring 

spatial structure from perceptions and the effects of his/her actions (Kuipers & Levitt, 1988). 

The Wayfinding Scale route strategy (Kremmyda et al., 2016) can be used in both spatial 

navigation and spatial anxiety. 

To solve navigation tasks, reference points determine the behavioral strategy for the route, 

and the perceptions of “place” and “object” are interrelated in navigation. In other words, the 

parameters of “object” vary depending on the position, and the parameters of “place” vary 

depending on the objects included. 

In 1970, Waldo Tobler introduced the first law of geography (Tobler, 1970), which states 

“everything is related to everything else, but near things are more related than distant things.” 

This principle can serve as the basis for the spatial analysis of continuous data on the same 

scale. 

Points with well-known attributes can serve as reference points in tasks that lack – or have 

excess – information. These points can also serve as a basis for creating a generalized 

coordinate system.  

In geostatistical interpolation techniques (for example, kriging), well-known attributes of 

reference points can be transferred to nearby points.  

Deterministic interpolation techniques create surfaces from measured points, 

(http://desktop.arcgis.com/en/arcmap/latest/extensions/geostatistical-analyst/deterministic-

methods-for-spatial-interpolation.htm) based on either the extent of similarity (inverse 

distance weighted) or the degree of smoothing (radial basis functions).  

The interpolation of data regarding the space between points with well-known attributes 

allows one to create new routes or modify existing routes. 

7. CONCLUSIONS 

As a result of analogous experiences in spatial data processing, researchers in the 

neuroscience and geoscience fields communicate in nearly the same language and use similar 

tools and techniques. 

In this review, we summarized the areas of interest common to brain mapping and GIS 

mapping, including: 

- Processing large numbers of images;  

- Rapid conversion of coordinates in individual brains;  

- Precise positioning of brain activity and neuroimaging data in the map of an individual 

brain; 

- Optimization of classifiers using existing GIS classifiers;  

- Modelling of dynamic brain maps and investigating brain connectivity; and 

- Positioning and navigation tasks.  

8. APPENDIX 

8.1 Basic standards  

Digital Imaging and Communications in Medicine (DICOM) is a standard for handling, 

storing, printing, and transmitting information in medical imaging. The DICOM Standard 

http://desktop.arcgis.com/en/arcmap/latest/extensions/geostatistical-analyst/deterministic-methods-for-spatial-interpolation.htm
http://desktop.arcgis.com/en/arcmap/latest/extensions/geostatistical-analyst/deterministic-methods-for-spatial-interpolation.htm
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now specified a network protocol utilizing TCP/IP, defined the operation of Service Classes 

beyond the simple transfer of data. DICOM was also structured as a multi-part document in 

order to facilitate extension of the standard. Additionally, DICOM defined Information 

Objects not only for images but also for patients, studies, reports, and other data grouping 

(http://dicom.nema.org). 

The MNI Coordinate System originated at the Montreal Neurological Institute and 

Hospital and is used to normalize anatomical 3D datasets. 

Talairach coordinates (http://www.talairach.org) is a 3D coordinate system of the human 

brain, which is used to map the location of brain structures independent from individual 

differences in the size and overall shape of the brain. 

Bias between MNI and Talairach Coordinates is shown in (Lancaster et al., 2007). 

A perennial source of confusion in brain mapping has been the small but significant 

differences between stereotaxic spaces owing to the different strategies for creating the 

template. The origin of the MNI152 templates is shifted approximately by + 3.5 mm in Z and 

+ 2.0 mm in Y relative to Talairach space. Various methods have been proposed to minimize 

these differences (Evans et al., 2012). 

During the measurements, the sensors occupy a certain position, which can be calculated, 

for example, in Subject Coordinate System (SCS / CTF) – 

(http://neuroimage.usc.edu/brainstorm/CoordinateSystems), where coordinates are specified 

relative to the calculated characteristic points of participants. 

8.2 Data exchange standards 

The brain is a complex organ consisting of various areas with specialized functions. The 

cartographic representation provides a conceptual framework for understanding the unique 

roles of cognitive systems in facilitating behavioral adaptability (Mattar et al., 2015). 

Flexible standards regarding data exchange and data sharing are essential for creating 

robust and meaningful convergent neuroimaging data obtained from different sources. 

Integration projects such as BrainMap (Laird et al., 2011) have been developed in response to 

the needs of researchers in the fields of structural and functional neuroimaging.  

Gorgolewski et al. attempted to organize and describe the output of neuroimaging 

experiments (Gorgolewski et al., 2016). Specifically, the authors used the XML-based 

Clinical Experiment Data Exchange (XCEDE) scheme to provide standards for describing 

neuroimaging data. 

The same group published a practical guide for neuroimaging research (Gorgolewski & 

Poldrack, 2016). In this guide, the authors cover three major topics in open science (data, 

code, and publications), and they propose using the Brain Imaging Data Structure to organize 

data. 

8.3 Brain mapping software 

FSL (FMRIB Software Library) (http://fsl.fmrib.ox.ac.uk) is a comprehensive library of 

analysis tools for fMRI, MRI and DTI brain imaging data. It runs on Apple and PCs (both 

Linux, and Windows via a Virtual Machine), and is very easy to install. Most of the tools can 

be run both from the command line and as GUIs (“point-and-click” graphical user interfaces). 

SPM (Statistical Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm) software package 

has been designed for the analysis of brain imaging data sequences. The sequences can be a 

series of images from different cohorts, or time-series from the same subject. The current 

release is designed for the analysis of fMRI, PET, SPECT, EEG and MEG. 

http://dicom.nema.org/Dicom/2011/11_19pu.pdf
http://www.talairach.org/
http://neuroimage.usc.edu/brainstorm/CoordinateSystems
http://fsl.fmrib.ox.ac.uk/
http://www.fil.ion.ucl.ac.uk/spm
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Loreta (http://www.uzh.ch/keyinst/loreta) is a software for analysis of low resolution brain 

electromagnetic tomography. 

Brain Explorer 2 (http://community.brain-map.org/display/BrainExplorer/Home) is a 

desktop software application for viewing brain anatomy and gene expression data in 3D. 

NeuroVIISAS (neuro Visualization, Imagemapping, Information System for Analysis and 

Simulation) (http://139.30.176.116/neuroviisas.html) is an open framework for integrative 

data analysis, visualization and population simulations. 

AAL (Automated anatomical labelling) (http://www.cyceron.fr/index.php/en/plateforme-

en/freeware) is a software package dependent upon the Matlab and SPM programs, typically 

used in functional neuroimaging-based research. 

NEST (The Neural Simulation Tool) (http://www.nest-simulator.org) is a simulator for 

spiking neural network models that focuses on the dynamics, size and structure of neural 

systems rather than on the exact morphology of individual neurons. 

Brainstorm (http://neuroimage.usc.edu/brainstorm/Introduction) is a collaborative, open-

source application dedicated to the analysis of brain recordings: MEG, EEG, fNIRS, ECoG, 

depth electrodes and animal electrophysiology. 

BrainVISA (http://www.brainvisa.info) provides a complete, modular, infrastructure for 

neuroimaging software. It helps organizing heterogeneous software and data and provides a 

common general graphical interface for users.  

FreeSurfer (http://surfer.nmr.mgh.harvard.edu) is an open source software suite for 

processing and analysing brain MRI images.  

3D Slicer (https://www.slicer.org) is an open source software platform for medical image 

informatics, image processing, and three-dimensional visualization. Built over two decades 

through support from the National Institutes of Health and a worldwide developer 

community, Slicer brings free, powerful cross-platform processing tools to physicians, 

researchers, and the general public. 

8.4 Brain Mapping organizations 

The Organization for Human Brain Mapping (OHBM) (www.humanbrainmapping.org) is the 

primary international organization dedicated to using neuroimaging to discover the 

organization of the human brain. 

The Human Brain Project (HBP) (www.humanbrainproject.eu) aims to collect, explain 

and simulate the functions of the human brain at different levels of hierarchical complexity. 

The HBP idea is to federate and integrate the data, thus making use of an abundance of 

biological information from the different levels of brain organization. Data mining will be 

used to extract sets of rules that constitute definitions of homogeneous groupings of patients 

or subjects (Frackowiak et al., 2016). 

The goal of the Blue Brain Project (http://bluebrain.epfl.ch) is to build biologically 

detailed digital reconstructions and simulations of the rodent, and ultimately the human brain. 

The project's novel research strategy exploits interdependencies in the experimental data to 

obtain dense maps of the brain, without measuring every detail of its multiple levels of 

organization (molecules, cells, micro-circuits, brain regions, whole brain). 

International Neuroinformatics Coordinating Facility (INCF) (https://www.incf.org) 

develops collaborative neuroinformatics infrastructure and promotes the sharing of data and 

computing resources to the international research community. 

 

 

http://www.uzh.ch/keyinst/loreta
http://community.brain-map.org/display/BrainExplorer/Home
http://139.30.176.116/neuroviisas.html
http://www.cyceron.fr/index.php/en/plateforme-en/freeware
http://www.cyceron.fr/index.php/en/plateforme-en/freeware
http://www.nest-simulator.org/
https://en.wikipedia.org/w/index.php?title=BrainVISA&action=edit&redlink=1
http://www.brainvisa.info/
http://surfer.nmr.mgh.harvard.edu/
https://www.slicer.org/
http://www.humanbrainmapping.org/
http://bluebrain.epfl.ch/
https://www.incf.org/
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